We develop a distributed Block Chebyshev-Davidson algorithm to solve large-scale leading eigenvalue problems for spectral analysis in spectral clustering. First, the efficiency of the Chebyshev-Davidson algorithm relies on the prior knowledge of the eigenvalue spectrum, which could be expensive to estimate. This issue can be lessened by the analytic spectrum estimation of the Laplacian or normalized Laplacian matrices in spectral clustering, making the proposed algorithm very efficient for spectral clustering. Second, to make the proposed algorithm capable of analyzing big data, a distributed and parallel version has been developed with attractive scalability. The speedup by parallel computing is approximately equivalent to $\sqrt{p}$, where $p$ denotes the number of processes. Numerical results will be provided to demonstrate its efficiency and advantage over existing algorithms in both sequential and parallel computing.
翻译:我们开发了分布式的Chebyshev-Davidson Block 算法, 以解决光谱集成中光谱分析的大型领先电子价值问题。 首先, Chebyshev- Davidson算法的效率取决于对电子价值谱的先前知识, 估计成本可能很高。 这个问题可以通过光谱集成中Laplacian 或普通Laplacian 矩阵的分析频谱估计来减轻, 使提议的算法对光谱集非常高效。 其次, 为使拟议的算法能够分析大数据, 开发了一个分布式和平行版, 具有吸引力的可缩放性。 平行计算的速度大约相当于$\sqrt{p} $, 其中$p$可以表示过程的数量。 将提供数值结果, 以显示其在连续和平行计算中的现有算法的效率和优势 。