Unsupervised domain adaptation is critical in various computer vision tasks, such as object detection, instance segmentation, etc. They attempt to reduce domain bias-induced performance degradation while also promoting model application speed. Previous works in domain adaptation object detection attempt to align image-level and instance-level shifts to eventually minimize the domain discrepancy, but they may align single-class features to mixed-class features in image-level domain adaptation because each image in the object detection task may be more than one class and object. In order to achieve single-class with single-class alignment and mixed-class with mixed-class alignment, we treat the mixed-class of the feature as a new class and propose a mixed-classes $H-divergence$ for object detection to achieve homogenous feature alignment and reduce negative transfer. Then, a Semantic Consistency Feature Alignment Model (SCFAM) based on mixed-classes $H-divergence$ was also presented. To improve single-class and mixed-class semantic information and accomplish semantic separation, the SCFAM model proposes Semantic Prediction Models (SPM) and Semantic Bridging Components (SBC). And the weight of the pix domain discriminator loss is then changed based on the SPM result to reduce sample imbalance. Extensive unsupervised domain adaption experiments on widely used datasets illustrate our proposed approach's robust object detection in domain bias settings.
翻译:在各种计算机视觉任务中,如物体检测、例中截分等等,不受监督的域适应至关重要。 它们试图减少域内偏差导致的性能退化,同时促进模型应用速度。 以往在域内适应对象探测工作试图将图像水平和例中的变化与图像水平的转变相协调,最终将域差异最小化,但是它们可能将单级特征与图像级别领域适应的混合类特征相协调,因为目标探测任务中的每个图像可能不止一个等级和目标。 为了实现单级和混合级的单级稳定调和混合级的混合级,我们试图将功能的混合级作为新类别处理,并提出混合级的美元-H值差异值目标检测,用于目标检测,以实现同质特征一致,并减少负转移。 然后,还介绍了一个基于混合级 $H- divec 调调和目标值的单级和混合级稳定级定级定级调和达到混合级的分级,为了改进单级的单级和混合级的定级信息,我们提议将功能类混合的混合级的特性分类作为新的类别,我们将功能分类的混合级预测对象级模型作为新的类别,我们提议将提出一个混合级的物体预测对象级模型模型模型,并列分级模型,并列成混合的混合的值模型,并列出一个混合级,并列成混合级,并列成混合的值美元,并列成混合级,并列,并列,然后提议混合地标,然后提出混合的元,提出一个混合的元,用于目标检测成一个混合的元,用于目标式标,用于混合级,以便成一个混合级,用于目标性标值模型,用于目标检测,以便级,然后提出混合的立,然后提出混合的元,以便进行同质性测测测测测测成,以便标制,然后制,然后制,然后将目标性测,然后将目标,然后在测试制,然后在测试制的立,然后再制测测制制制制制制测制测制制,然后用。制,然后使用SPB型,然后使用SBSM 级测制,然后使用SM 级的测制制,然后将降低SM 级测制制制制制制制,然后制制制制制制制制的