Ophthalmic images may contain identical-looking pathologies that can cause failure in automated techniques to distinguish different retinal degenerative diseases. Additionally, reliance on large annotated datasets and lack of knowledge distillation can restrict ML-based clinical support systems' deployment in real-world environments. To improve the robustness and transferability of knowledge, an enhanced feature-learning module is required to extract meaningful spatial representations from the retinal subspace. Such a module, if used effectively, can detect unique disease traits and differentiate the severity of such retinal degenerative pathologies. In this work, we propose a robust disease detection architecture with three learning heads, i) A supervised encoder for retinal disease classification, ii) An unsupervised decoder for the reconstruction of disease-specific spatial information, and iii) A novel representation learning module for learning the similarity between encoder-decoder feature and enhancing the accuracy of the model. Our experimental results on two publicly available OCT datasets illustrate that the proposed model outperforms existing state-of-the-art models in terms of accuracy, interpretability, and robustness for out-of-distribution retinal disease detection.
翻译:光谱图象可能含有相同的貌似病理学,可能导致自动化技术无法区分不同的视网膜变性疾病。此外,依赖大型附加说明的数据集和缺乏知识蒸馏,可能会限制基于ML的临床支持系统在现实世界环境中的部署。为了提高知识的稳健性和可转让性,需要有一个强化的特征学习模块,从视网膜子空间中提取有意义的空间表达方式。这种模块如果得到有效使用,可以检测独特的疾病特征,并区分此类视网膜退化病理病理的严重性。在这项工作中,我们提出一个有3个学习头的强健的疾病检测结构,(一) 用于视网膜疾病分类的监管编码器,(二) 一个用于重建特定疾病空间信息的不受监督的解码器,(三) 一个用于学习昆虫分解器特性的相似性和提高模型的准确性的新的代表性学习模块。我们在两个公开提供的OCT数据集上的实验结果表明,拟议的模型在准确性、可解释性、可靠性、可变性的疾病检测性、可变性的再置换性方面,显示现有状态模型的可靠。