The solution of systems of linear(ized) equations lies at the heart of many problems in Scientific Computing. In particular for systems of large dimension, iterative methods are a primary approach. Stationary iterative methods are generally based on a matrix splitting, whereas for polynomial iterative methods such as Krylov subspace iteration, the splitting matrix is the preconditioner. The smoother in a multigrid method is generally a stationary or polynomial iteration. Here we consider real symmetric indefinite and complex Hermitian indefinite coefficient matrices and prove that no splitting matrix can lead to a contractive stationary iteration unless the inertia is exactly preserved. This has consequences for preconditioning for indefinite systems and smoothing for multigrid as we further describe.
翻译:暂无翻译