With the capability of accurately representing a functional relationship between the inputs of a physical system's model and output quantities of interest, neural networks have become popular for surrogate modeling in scientific applications. However, as these networks are over-parameterized, their training often requires a large amount of data. To prevent overfitting and improve generalization error, regularization based on, e.g., $\ell_1$- and $\ell_2$-norms of the parameters is applied. Similarly, multiple connections of the network may be pruned to increase sparsity in the network parameters. In this paper, we explore the effects of sparsity promoting $\ell_1$-regularization on training neural networks when only a small training dataset from a high-fidelity model is available. As opposed to standard $\ell_1$-regularization that is known to be inadequate, we consider two variants of $\ell_1$-regularization informed by the parameters of an identical network trained using data from lower-fidelity models of the problem at hand. These bi-fidelity strategies are generalizations of transfer learning of neural networks that uses the parameters learned from a large low-fidelity dataset to efficiently train networks for a small high-fidelity dataset. We also compare the bi-fidelity strategies with two $\ell_1$-regularization methods that only use the high-fidelity dataset. Three numerical examples for propagating uncertainty through physical systems are used to show that the proposed bi-fidelity $\ell_1$-regularization strategies produce errors that are one order of magnitude smaller than those of networks trained only using datasets from the high-fidelity models.


翻译:由于能够准确地代表物理系统模型和输出量的输入之间的功能关系,神经网络在科学应用中已成为替代模型的流行型号。然而,由于这些网络过于光度过强,因此其培训往往需要大量的数据。为了防止超常和改进一般化错误,应用了基于参数(例如$\ell_1美元和$\ell_2美元)的规范化。同样,网络的多个连接可能被调整,以增加网络参数的偏移性。在本文件中,我们探讨了在只有高忠实模型的微小培训数据集组合时,神经网络在培训神经网络中推广 $\ell_1美元-1美元-正规化的影响。相对于已知不充分的标准化标准$\ell_1美元和$\ell_2美元,我们考虑两种基于使用低忠诚模型所培训的相同网络参数的变异种 $_1美元- 更常规化的网络,这些二元级化战略是用高货币- 数字模型的简单化 数据转换系统,我们用高货币化的一等化战略来学习数据系统。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年7月15日
Arxiv
3+阅读 · 2018年8月17日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
BranchOut: Regularization for Online Ensemble Tracking with CNN
统计学习与视觉计算组
9+阅读 · 2017年10月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员