The search for neural architecture is producing many of the most exciting results in artificial intelligence. It has increasingly become apparent that task-specific neural architecture plays a crucial role for effectively solving problems. This paper presents a simple method for learning neural architecture through random mutation. This method demonstrates 1) neural architecture may be learned during the agent's lifetime, 2) neural architecture may be constructed over a single lifetime without any initial connections or neurons, and 3) architectural modifications enable rapid adaptation to dynamic and novel task scenarios. Starting without any neurons or connections, this method constructs a neural architecture capable of high-performance on several tasks. The lifelong learning capabilities of this method are demonstrated in an environment without episodic resets, even learning with constantly changing morphology, limb disablement, and changing task goals all without losing locomotion capabilities.
翻译:寻找神经结构正在人工智能中产生许多最令人兴奋的结果。 越来越明显的是, 特定任务神经结构在有效解决问题方面发挥着关键作用。 本文展示了通过随机突变学习神经结构的简单方法。 这一方法表明:(1) 可能在代理人的一生中学习神经结构;(2) 神经结构可以在没有初始连接或神经元的情况下为单一一生建造;以及(3) 建筑改造能够迅速适应动态和新颖的任务情景。 从没有任何神经元或连接开始,该方法构建了能够高性能完成多项任务的神经结构。 这种方法的终身学习能力在没有隐性留置物的环境中展示,甚至学习不断变化的形态、肢体残疾和任务目标,而不会失去行动能力。