True random number generators (TRNG) sample random physical processes to create large amounts of random numbers for various use cases, including security-critical cryptographic primitives, scientific simulations, machine learning applications, and even recreational entertainment. Unfortunately, not every computing system is equipped with dedicated TRNG hardware, limiting the application space and security guarantees for such systems. To open the application space and enable security guarantees for the overwhelming majority of computing systems that do not necessarily have dedicated TRNG hardware, we develop QUAC-TRNG. QUAC-TRNG exploits the new observation that a carefully-engineered sequence of DRAM commands activates four consecutive DRAM rows in rapid succession. This QUadruple ACtivation (QUAC) causes the bitline sense amplifiers to non-deterministically converge to random values when we activate four rows that store conflicting data because the net deviation in bitline voltage fails to meet reliable sensing margins. We experimentally demonstrate that QUAC reliably generates random values across 136 commodity DDR4 DRAM chips from one major DRAM manufacturer. We describe how to develop an effective TRNG (QUAC-TRNG) based on QUAC. We evaluate the quality of our TRNG using NIST STS and find that QUAC-TRNG successfully passes each test. Our experimental evaluations show that QUAC-TRNG generates true random numbers with a throughput of 3.44 Gb/s (per DRAM channel), outperforming the state-of-the-art DRAM-based TRNG by 15.08x and 1.41x for basic and throughput-optimized versions, respectively. We show that QUAC-TRNG utilizes DRAM bandwidth better than the state-of-the-art, achieving up to 2.03x the throughput of a throughput-optimized baseline when scaling bus frequencies to 12 GT/s.


翻译:真正的随机数生成器(TRNG) 抽样随机随机物理过程,为各种使用案例创造大量随机数字,包括安全临界加密原始程序、科学模拟、机器学习应用,甚至娱乐娱乐。 不幸的是,并不是每个计算机系统都配备了专门的TRNG硬件,限制了这些系统的应用空间和安全保障。要打开应用空间,并为绝大多数不一定有TRNG硬件的计算机系统提供安全保障,我们开发了QUAC-TRNG。QUAC利用了以下新观察,即经过精心设计的DRAM指令序列快速启动连续四个DRAM行。这个QUruple Actition(QUAC) 使位数放大器不具有定式性地趋同随机值。当我们启动四行存储数据时,由于Bitline vot 的净偏差无法达到可靠的测距值。 我们实验性地证明,QUAC通过一个主要的DRMRMDF4 芯片制造商在136种商品DRM4 DAR4中产生随机值。我们用NGTRQQQQ(QQQQQ) 和NGQQQQAADADADADA 进行真正的测试时,我们通过每个测试质量的正确评估。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
78+阅读 · 2020年2月3日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
GitHub超9千星:一个API调用27个NLP预训练模型
新智元
17+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Fast compression of MCMC output
Arxiv
0+阅读 · 2021年7月9日
Generating Fact Checking Explanations
Arxiv
9+阅读 · 2020年4月13日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
GitHub超9千星:一个API调用27个NLP预训练模型
新智元
17+阅读 · 2019年7月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员