The Optimal transport (OT) problem is rapidly finding its way into machine learning. Favoring its use are its metric properties. Many problems admit solutions with guarantees only for objects embedded in metric spaces, and the use of non-metrics can complicate solving them. Multi-marginal OT (MMOT) generalizes OT to simultaneously transporting multiple distributions. It captures important relations that are missed if the transport only involves two distributions. Research on MMOT, however, has been focused on its existence, uniqueness, practical algorithms, and the choice of cost functions. There is a lack of discussion on the metric properties of MMOT, which limits its theoretical and practical use. Here, we prove new generalized metric properties for a family of pairwise MMOTs. We first explain the difficulty of proving this via two negative results. Afterward, we prove the MMOTs' metric properties. Finally, we show that the generalized triangle inequality of this family of MMOTs cannot be improved. We illustrate the superiority of our MMOTs over other generalized metrics, and over non-metrics in both synthetic and real tasks.
翻译:最佳运输(OT)问题正在迅速进入机器学习中。 最优化运输( OT) 问题正在迅速进入机器学习中。 与其使用相近的是其量性。 许多问题都承认解决方案,但只能对嵌入计量空间的物体提供保障, 而使用非计量技术则会使解决问题复杂化。 多边际运输( MMOT) 将 OT 概括化为同时运输多种分布物。 它记录了运输只涉及两种分布物的重要关系。 但是, 有关MMOT 的研究侧重于它的存在、 独特性、 实际算法和成本功能的选择。 缺乏关于MMOT 的计量特性的讨论, 它限制了它的理论和实践用途。 在这里, 我们证明一对双向的MMOT 家庭具有新的通用度性。 我们首先通过两个负面结果来解释证明这一点的困难。 之后, 我们证明MOT 的衡量特性。 最后, 我们证明MOT 家庭的普遍三角不平等性是无法改善的。 我们说明我们的MOT 优于其他通用度度度度度指标, 以及合成和真实任务中的非计量值。