Vehicle pose estimation with LiDAR is essential in the perception technology of autonomous driving. However, due to incomplete observation measurements and sparsity of the LiDAR point cloud, it is challenging to achieve satisfactory pose extraction based on 3D LiDAR by using the existing pose estimation methods. In addition, the requirement for real-time performance further increases the difficulty of the pose estimation task. In this paper, we proposed a novel convex hull-based vehicle pose estimation method. The extracted 3D cluster is reduced to the convex hull, reducing the computation burden and retaining contour information. Then a novel criterion based on the minimum occlusion area is developed for the search-based algorithm, which can achieve accurate pose estimation. This criterion also makes the proposed algorithm especially suitable for obstacle avoidance. The proposed algorithm is validated on the KITTI dataset and a manually labeled dataset acquired at an industrial park. The results show that our proposed method can achieve better accuracy than the state-of-the-art pose estimation method while maintaining real-time speed.
翻译:暂无翻译