Multi-agent actor-critic algorithms are an important part of the Reinforcement Learning paradigm. We propose three fully decentralized multi-agent natural actor-critic (MAN) algorithms in this work. The objective is to collectively find a joint policy that maximizes the average long-term return of these agents. In the absence of a central controller and to preserve privacy, agents communicate some information to their neighbors via a time-varying communication network. We prove convergence of all the 3 MAN algorithms to a globally asymptotically stable set of the ODE corresponding to actor update; these use linear function approximations. We show that the Kullback-Leibler divergence between policies of successive iterates is proportional to the objective function's gradient. We observe that the minimum singular value of the Fisher information matrix is well within the reciprocal of the policy parameter dimension. Using this, we theoretically show that the optimal value of the deterministic variant of the MAN algorithm at each iterate dominates that of the standard gradient-based multi-agent actor-critic (MAAC) algorithm. To our knowledge, it is a first such result in multi-agent reinforcement learning (MARL). To illustrate the usefulness of our proposed algorithms, we implement them on a bi-lane traffic network to reduce the average network congestion. We observe an almost 25\% reduction in the average congestion in 2 MAN algorithms; the average congestion in another MAN algorithm is on par with the MAAC algorithm. We also consider a generic $15$ agent MARL; the performance of the MAN algorithms is again as good as the MAAC algorithm.


翻译:强化学习模式的一个重要部分。 我们在此工作中建议三个完全分散的多试剂自然行为者―― 加速( MAN) 算法。 目标是集体寻找一个联合政策, 最大限度地提高这些代理商的平均长期回报率。 在没有中央控制器的情况下, 并保护隐私, 代理商通过时间变化通信网络将一些信息传递给邻居。 我们证明所有3个 MAN 算法都与一个全球无影响稳定的、 与行为者更新相对应的 ODE 一组无影响的一般稳定; 这些使用线性函数近似值。 我们显示, 连续迭代商政策之间的 Kullback- Leiper 差异与目标函数的梯度成比例成正比。 我们观察到, 渔业信息矩阵的最低单值是在政策参数的对等范围内。 我们利用这个理论来显示, 每一个代号的 MAN 算法的确定性变数最优值主宰着标准的基于梯度的多剂行为者―― 动作算法(MAAC) 的计算法; 我们所了解的是, 在多代代数的递算法中, 也是第一个在多级递解算算算算算法中, 中, 中, 将一个几乎可以降低 MAL 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2010年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
36+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2010年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员