We study the problem of PAC learning halfspaces on $\mathbb{R}^d$ with Massart noise under Gaussian marginals. In the Massart noise model, an adversary is allowed to flip the label of each point $\mathbf{x}$ with probability $\eta(\mathbf{x}) \leq \eta$, for some parameter $\eta \in [0,1/2]$. The goal of the learner is to output a hypothesis with missclassification error $\mathrm{opt} + \epsilon$, where $\mathrm{opt}$ is the error of the target halfspace. Prior work studied this problem assuming that the target halfspace is homogeneous and that the parameter $\eta$ is strictly smaller than $1/2$. We explore how the complexity of the problem changes when either of these assumptions is removed, establishing the following threshold phenomena: For $\eta = 1/2$, we prove a lower bound of $d^{\Omega (\log(1/\epsilon))}$ on the complexity of any Statistical Query (SQ) algorithm for the problem, which holds even for homogeneous halfspaces. On the positive side, we give a new learning algorithm for arbitrary halfspaces in this regime with sample complexity and running time $O_\epsilon(1) \, d^{O(\log(1/\epsilon))}$. For $\eta <1/2$, we establish a lower bound of $d^{\Omega(\log(1/\gamma))}$ on the SQ complexity of the problem, where $\gamma = \max\{\epsilon, \min\{\mathbf{Pr}[f(\mathbf{x}) = 1], \mathbf{Pr}[f(\mathbf{x}) = -1]\} \}$ and $f$ is the target halfspace. In particular, this implies an SQ lower bound of $d^{\Omega (\log(1/\epsilon) )}$ for learning arbitrary Massart halfspaces (even for small constant $\eta$). We complement this lower bound with a new learning algorithm for this regime with sample complexity and runtime $d^{O_{\eta}(\log(1/\gamma))} \mathrm{poly}(1/\epsilon)$. Taken together, our results qualitatively characterize the complexity of learning halfspaces in the Massart model.


翻译:我们研究PAC在 $\ mathb{R ⁇ d$ 上学习半空的问题。 学习者的目标是输出一个错误分类错误的假设 $\ mathb{R} 在 Gausa 边际值下, 允许对手翻转每个点的标签 $\ mathbf{x} 美元, 概率 $\ leq\ deta$ (mathb{x}), 对于某些参数 $\ a, $\ f\ 美元 [0/1/2] 。 学习者的目标是输出一个错误分类错误错误的假设 $\ mathr{ 美元 +\ epselon$, $\ mathr% 边际值是目标半空间的错误。 先前的工作研究假设目标半空间是同质的, 而参数 $\ a/2美元 。 我们探索当这些假设中的任何一个值被删除时问题的复杂性如何, 建立以下的起始现象: $\ = = = = = 美元, Q, 我们证明一个特殊的 Q (log ) 在任何统计问题中, 问题中, Q 的正数 的 问题 。

0
下载
关闭预览

相关内容

区块链白皮书(2020年),60页pdf
专知会员服务
92+阅读 · 2021年1月5日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
4+阅读 · 2020年1月17日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
区块链白皮书(2020年),60页pdf
专知会员服务
92+阅读 · 2021年1月5日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员