We develop an algorithm that computes strongly continuous semigroups on infinite-dimensional Hilbert spaces with explicit error control. Given a generator $A$, a time $t>0$, an arbitrary initial vector $u_0$ and an error tolerance $\epsilon>0$, the algorithm computes $\exp(tA)u_0$ with error bounded by $\epsilon$. The algorithm is based on a combination of a regularized functional calculus, suitable contour quadrature rules, and the adaptive computation of resolvents in infinite dimensions. As a particular case, we show that it is possible, even when only allowing pointwise evaluation of coefficients, to compute, with error control, semigroups on the unbounded domain $L^2(\mathbb{R}^d)$ that are generated by partial differential operators with polynomially bounded coefficients of locally bounded total variation. For analytic semigroups (and more general Laplace transform inversion), we provide a quadrature rule whose error decreases like $\exp(-cN/\log(N))$ for $N$ quadrature points, that remains stable as $N\rightarrow\infty$, and which is also suitable for infinite-dimensional operators. Numerical examples are given, including: Schr\"odinger and wave equations on the aperiodic Ammann--Beenker tiling, complex perturbed fractional diffusion equations on $L^2(\mathbb{R})$, and damped Euler--Bernoulli beam equations.


翻译:我们开发了一种算法, 在无限的Hilbert 空格上计算强烈连续的半组, 并有明确的错误控制。 如果有发电机 $A, 时间 > 0 美元, 任意初始矢量 $_ 0 美元 和错误容忍 $\ epsilon> 0 美元, 算法计算 $\ exm( tA) u_ 0 美元, 由 $\ epsilon 受 $\ epsilon 约束的错误构成。 算法基于常规功能计算、 合适的等等等功能的计算组合, 以及无限尺寸的固态计算。 具体的例子是, 即使只允许对系数进行点度评估, 也只能用错误控制来计算, 在无界域的 $L2( mathbrickral) 中半组 美元(rickal-rickal- developlemental $Nral- develople) 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月3日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
Arxiv
3+阅读 · 2018年11月11日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员