Recent studies have indicated that Graph Convolutional Networks (GCNs) act as a \emph{low pass} filter in spectral domain and encode smoothed node representations. In this paper, we consider their opposite, namely Graph Deconvolutional Networks (GDNs) that reconstruct graph signals from smoothed node representations. We motivate the design of Graph Deconvolutional Networks via a combination of inverse filters in spectral domain and de-noising layers in wavelet domain, as the inverse operation results in a \emph{high pass} filter and may amplify the noise. Based on the proposed GDN, we further propose a graph autoencoder framework that first encodes smoothed graph representations with GCN and then decodes accurate graph signals with GDN. We demonstrate the effectiveness of the proposed method on several tasks including unsupervised graph-level representation , social recommendation and graph generation
翻译:最近的研究表明,图形革命网络(GCNs)在光谱域域和编码平滑节点表示法中充当了 emph{plow pass} 过滤器,在光谱域和编码平滑节点表示法中,我们认为它们正好相反,即从平滑节点表示法中重建图形信号的图形进化网络(GDNs),我们通过将光谱域的反向过滤器和波干域中去传层结合起来,推动图革命网络的设计,因为反向操作的结果是形成\emph{highcrpass}过滤器,并可能扩大噪音。根据拟议的GDN,我们进一步提议了一个图形自动编码框架,首先将平滑图表示法与GCN编码,然后将精确的图形信号与GDN编码。 我们展示了拟议方法在几个任务上的有效性,包括未经监督的图形级表示法、社会建议和图形生成法。