Robust mixed finite element methods are developed for a quad-curl singular perturbation problem. Lower order H(grad curl)-nonconforming but H(curl)-conforming finite elements are constructed, which are extended to nonconforming finite element Stokes complexes and the associated commutative diagrams. Then H(grad curl)-nonconforming finite elements are employed to discretize the quad-curl singular perturbation problem, which possess the sharp and uniform error estimates with respect to the perturbation parameter. The Nitsche's technique is exploited to achieve the optimal convergence rate in the case of the boundary layers. Numerical results are provided to verify the theoretical convergence rates. In addition, the regularity of the quad-curl singular perturbation problem is established.
翻译:为四曲线单扰动问题开发了强压混合有限元素方法。 构建了低顺序 H( rod curl) 与 comporation 不同的H( curl) 和 H( curl) 兼容的有限元素,这些元素扩展到不兼容的定质元素复合体和相关的通量图。 然后,H( grad curl) 和不兼容的有限元素用于分离四曲线单扰动问题,这些元素拥有与扰动参数有关的尖度和统一误差估计。 Nitsche 的技术被用于实现边界层的最佳趋同率。 提供了数值结果以核实理论趋同率。 此外, 确定了四曲线单扰动问题的规律性。