Network alignment is a problem of finding the node mapping between similar networks. It links the data from separate sources and is widely studied in bioinformation and social network fields. The critical difference between network alignment and exact graph matching is that the network alignment considers node mapping in non-isomorphic graphs with error tolerance. Researchers usually utilize AC (accuracy) to measure the performance of network alignments which comparing each output element with the benchmark directly. However, this metric neglects that some nodes are naturally indistinguishable even in single graphs (e.g., nodes have the same neighbors) and no need to distinguish across graphs. Such neglect leads to the underestimation of models. We propose an unbiased metric for network alignment that takes indistinguishable nodes into consideration to address this problem. Our detailed experiments with different scales on both synthetic and real-world datasets demonstrate that the proposed metric correctly reflects the deviation of result mapping from benchmark mapping as standard metric AC does. Comparing with the AC, the proposed metric effectively blocks the effect of indistinguishable nodes and retains stability under increasing indistinguishable nodes.
翻译:网络对齐是一个在类似网络之间找到节点绘图的问题。 它将不同来源的数据连接起来, 并在生物信息和社会网络领域广泛研究。 网络对齐和精确图形匹配之间的关键区别在于, 网络对齐考虑非异形图形中的节点绘图与差分容忍度。 研究人员通常使用 AC( 准确性) 来测量网络对齐的性能, 将每个输出元素与基准直接进行比较。 但是, 这一指标忽略了某些节点自然是无法分辨的, 甚至在单一图表中( 例如, 节点有相同的邻居), 也没有必要对图表进行区分。 这种忽略导致对模型的低估。 我们为网络对齐提出了不带差异的节点进行公正的衡量标准, 以解决这一问题。 我们对合成和真实世界数据集的不同尺度进行的详细实验表明, 拟议的指标正确地反映了结果对基准绘图的偏差, 与标准的 AC 相匹配。 与 AC 比较, 拟议的指标有效地阻止了不可分辨的节点的效果, 并保持稳定性, 不断增长 。