Health literacy has emerged as a crucial factor in making appropriate health decisions and ensuring treatment outcomes. However, medical jargon and the complex structure of professional language in this domain make health information especially hard to interpret. Thus, there is an urgent unmet need for automated methods to enhance the accessibility of the biomedical literature to the general population. This problem can be framed as a type of translation problem between the language of healthcare professionals, and that of the general public. In this paper, we introduce the novel task of automated generation of lay language summaries of biomedical scientific reviews, and construct a dataset to support the development and evaluation of automated methods through which to enhance the accessibility of the biomedical literature. We conduct analyses of the various challenges in solving this task, including not only summarization of the key points but also explanation of background knowledge and simplification of professional language. We experiment with state-of-the-art summarization models as well as several data augmentation techniques, and evaluate their performance using both automated metrics and human assessment. Results indicate that automatically generated summaries produced using contemporary neural architectures can achieve promising quality and readability as compared with reference summaries developed for the lay public by experts (best ROUGE-L of 50.24 and Flesch-Kincaid readability score of 13.30). We also discuss the limitations of the current attempt, providing insights and directions for future work.


翻译:卫生知识普及已成为在做出适当的卫生决定和确保治疗结果方面的一个关键因素,然而,医学术语和该领域专业语言的复杂结构使得健康信息特别难于解释。因此,迫切需要采用自动化方法提高普通民众获得生物医学文献的机会,这个问题可被描述为保健专业人员和一般公众语言之间的一种翻译问题。在本文件中,我们引入了以自动化方式生成生物医学科学审查非专业语言摘要的新任务,并构建了一个数据集,以支持开发和评估提高生物医学文献可获取性的各种自动化方法。我们分析了在完成这项任务时所面临的各种挑战,包括不仅对关键点进行总结,而且对背景知识和专业语言的简化作出解释。我们试验的是最新综合模型以及若干数据增强技术,并使用自动化计量和人文评估来评价其绩效。结果显示,与专家为公众编写的参考摘要相比,自动生成的概要可以实现有希望的质量和可读性。我们还讨论了50.24年期预估前程和30年期预估前程,我们还讨论了50.24年预估前程,并讨论了未来预估力。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
18+阅读 · 2020年9月6日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Deep learning for cardiac image segmentation: A review
Arxiv
21+阅读 · 2019年11月9日
Techniques for Automated Machine Learning
Arxiv
4+阅读 · 2019年7月21日
Arxiv
3+阅读 · 2018年12月18日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员