An increasingly popular set of techniques adopted by software engineering (SE) researchers to automate development tasks are those rooted in the concept of Deep Learning (DL). The popularity of such techniques largely stems from their automated feature engineering capabilities, which aid in modeling software artifacts. However, due to the rapid pace at which DL techniques have been adopted, it is difficult to distill the current successes, failures, and opportunities of the current research landscape. In an effort to bring clarity to this crosscutting area of work, from its modern inception to the present, this paper presents a systematic literature review of research at the intersection of SE & DL. The review canvases work appearing in the most prominent SE and DL conferences and journals and spans 128 papers across 23 unique SE tasks. We center our analysis around the components of learning, a set of principles that govern the application of machine learning techniques (ML) to a given problem domain, discussing several aspects of the surveyed work at a granular level. The end result of our analysis is a research roadmap that both delineates the foundations of DL techniques applied to SE research, and highlights likely areas of fertile exploration for the future.


翻译:软件工程(SE)研究人员为将发展任务自动化而采用的一套日益普及的技术是深造概念中根深蒂固的技术。这些技术的普及主要来自其自动化地物工程能力,这些技术有助于软件文物的建模。然而,由于采用DL技术的速度很快,很难总结目前研究领域的成功、失败和机会。为了澄清这一从现代开始到现在的交叉工作领域,本文件对SE & DL交叉点的研究进行了系统化的文献审查。在最著名的SE和DL会议和期刊中出现的审查画布的工作覆盖了128篇论文,覆盖了23项独特的SE任务。我们集中分析学习的组成部分,这是一套指导将机器学习技术(ML)应用于特定问题领域的一套原则,讨论了在颗粒层一级调查工作的若干方面。我们分析的最终结果是一份研究路线图,其中既描述了DL技术应用于SE研究的基础,又突出了未来可能肥沃的勘探领域。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【如何做研究】How to research ,22页ppt
专知会员服务
108+阅读 · 2021年4月17日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
58+阅读 · 2020年5月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
57+阅读 · 2021年5月3日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Arxiv
12+阅读 · 2018年9月5日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年6月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
57+阅读 · 2021年5月3日
Review: deep learning on 3D point clouds
Arxiv
5+阅读 · 2020年1月17日
Arxiv
12+阅读 · 2018年9月5日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
15+阅读 · 2018年6月23日
Top
微信扫码咨询专知VIP会员