In classification tasks, it is crucial to meaningfully exploit the information contained in data. While much of the work in addressing these tasks is devoted to building complex algorithmic infrastructures to process inputs in a black-box fashion, less is known about how to exploit the various facets of the data, before inputting this into an algorithm. Here, we focus on this latter perspective, by proposing a physics-inspired dynamical system that adapts Optimal Transport principles to effectively leverage color distributions of images. Our dynamics regulates immiscible fluxes of colors traveling on a network built from images. Instead of aggregating colors together, it treats them as different commodities that interact with a shared capacity on edges. The resulting optimal flows can then be fed into standard classifiers to distinguish images in different classes. We show how our method can outperform competing approaches on image classification tasks in datasets where color information matters.
翻译:在分类任务中,有意义地利用数据所含信息至关重要。 虽然处理这些任务的大部分工作都致力于建设复杂的算法基础设施,以黑箱方式处理投入,但在将数据输入算法之前,如何利用数据的各个方面却不那么为人所知。 在这里,我们注重后一种观点,方法是提出一个物理学启发的动态系统,以调整最佳运输原则,从而有效地利用图像的颜色分布。我们的动态调节了在从图像建立起来的网络上行走的不相矛盾的色彩通量。 它不是将颜色集中在一起,而是把它们作为不同的商品,与边缘的共享能力相互作用。 由此产生的最佳流动随后可以被输入到标准分类器中, 以区分不同类别的图像。 我们展示我们的方法如何在颜色信息重要的数据集中超越相竞的图像分类任务。</s>