Variable stiffness actuator (VSA) designs are manifold. Conventional model-based control of these nonlinear systems is associated with high effort and design-dependent assumptions. In contrast, machine learning offers a promising alternative as models are trained on real measured data and nonlinearities are inherently taken into account. Our work presents a universal, learning-based approach for position and stiffness control of soft actuators. After introducing a soft pneumatic VSA, the model is learned with input-output data. For this purpose, a test bench was set up which enables automated measurement of the variable joint stiffness. During control, Gaussian processes are used to predict pressures for achieving desired position and stiffness. The feedforward error is on average 11.5% of the total pressure range and is compensated by feedback control. Experiments with the soft actuator show that the learning-based approach allows continuous adjustment of position and stiffness without model knowledge.
翻译:变量硬性振动器( VSA) 设计是多方面的。 这些非线性系统的常规模型控制与高度努力和设计依赖的假设相关。 相反, 机器学习提供了一种有希望的替代方法, 因为模型在实际测量数据方面受过培训, 而非线性则得到内在的考虑。 我们的工作展示了一种通用的、 学习的软动因子定位和僵硬控制方法。 在引入软充气VSA后, 模型与输入- 输出数据一起学习。 为此, 设置了一个测试台, 可以自动测量变量的共硬性。 在控制期间, Gausian 程序被用来预测达到预期位置和坚硬性的压力。 进料错误平均占总压力范围的11.5%, 并通过反馈控制补偿。 与软动因子的实验显示, 以学习为基础的方法允许在没有模型知识的情况下持续调整位置和僵硬性。</s>