In continual learning, new categories may be introduced over time, and an ideal learning system should perform well on both the original categories and the new categories. While deep neural nets have achieved resounding success in the classical supervised setting, they are known to forget about knowledge acquired in prior episodes of learning if the examples encountered in the current episode of learning are drastically different from those encountered in prior episodes. In this paper, we propose a new method that can both leverage the expressive power of deep neural nets and is resilient to forgetting when new categories are introduced. We found the proposed method can reduce forgetting by 2.3x to 6.9x on CIFAR-10 compared to existing methods and by 1.8x to 2.7x on ImageNet compared to an oracle baseline.


翻译:在不断学习的过程中,可以引入新的类别,理想的学习系统应该在原有类别和新类别上运行良好。虽然深神经网在古典监督环境中取得了巨大成功,但众所周知,如果当前学习阶段遇到的例子与以往阶段的情况大不相同,它们会忘记在以往学习阶段获得的知识。在本文中,我们提出了一种新的方法,既可以利用深神经网的表达力,也可以在引入新类别时有弹性地忘记。我们发现,与现有方法相比,拟议的方法可以减少CIFAR-10在CIFAR-10上的遗忘2.3x至6.9x,与甲骨文基准相比,图像网在1.8x至2.7x。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
131+阅读 · 2020年5月14日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
3+阅读 · 2018年8月27日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
14+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Few-shot Learning: A Survey
Arxiv
363+阅读 · 2019年4月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
3+阅读 · 2018年8月27日
Arxiv
8+阅读 · 2018年5月15日
Top
微信扫码咨询专知VIP会员