Well-executed emergency evacuations can save lives and reduce suffering. However, decision makers struggle to determine optimal evacuation policies given the chaos, uncertainty, and value judgments inherent in emergency evacuations. We propose and analyze a decision support tool for pre-crisis training exercises for teams preparing for civilian evacuations and explore the tool in the case of the 2021 U.S.-led evacuation from Afghanistan. We use different classes of Markov decision processes (MDPs) to capture compounding levels of uncertainty in (1) the priority category of who appears next at the gate for evacuation, (2) the distribution of priority categories at the population level, and (3) individuals' claimed priority category. We compare the number of people evacuated by priority status under eight heuristic policies. The optimized MDP policy achieves the best performance compared to all heuristic baselines. We also show that accounting for the compounding levels of model uncertainty incurs added complexity without improvement in policy performance. Useful heuristics can be extracted from the optimized policies to inform human decision makers. We open-source all tools to encourage robust dialogue about the trade-offs, limitations, and potential of integrating algorithms into high-stakes humanitarian decision-making.
翻译:妥善执行的紧急疏散可以挽救生命和减少痛苦。然而,决策者努力确定最佳疏散政策,因为紧急疏散具有混乱、不确定和价值判断等固有因素。我们提议和分析为准备平民疏散的小组进行危机前训练演习提供的决策支持工具,并探讨2021年美国牵头从阿富汗撤离时采用的工具。我们使用不同等级的马尔科夫决策过程(MDPs)来捕捉(1) 最优先的疏散对象类别,(2) 在人口一级分配优先类别,(3) 个人声称的优先类别。我们比较了根据八种超重政策优先疏散的人数。优化的MDP政策取得了最佳业绩,而与所有超重基线相比。我们还表明,在不改进政策性能的情况下,计算模型不确定性的复合水平会增加复杂性。从优化的政策中可以抽取有用的超常主义,为人类决策者提供信息。我们开发了所有工具,鼓励就交易、限制和将算法纳入高额人道主义决策的可能性进行强有力的对话。