The use of AI in healthcare is designed to improve care delivery and augment the decisions of providers to enhance patient outcomes. When deployed in clinical settings, the interaction between providers and AI is a critical component for measuring and understanding the effectiveness of these digital tools on broader health outcomes. Even in cases where AI algorithms have high diagnostic accuracy, healthcare providers often still rely on their experience and sometimes gut feeling to make a final decision. Other times, providers rely unquestioningly on the outputs of the AI models, which leads to a concern about over-reliance on the technology. The purpose of this research was to understand how reliant drug shop dispensers were on AI-powered technologies when determining a differential diagnosis for a presented clinical case vignette. We explored how the drug dispensers responded to technology that is framed as always correct in an attempt to measure whether they begin to rely on it without any critical thought of their own. We found that dispensers relied on the decision made by the AI 25 percent of the time, even when the AI provided no explanation for its decision.


翻译:在保健方面使用AI是为了改善护理的提供,并增加提供者的决定,以提高病人的结果。在临床环境中部署时,提供者与AI之间的互动是衡量和理解这些数字工具在更广泛的保健结果方面的有效性的一个关键组成部分。即使AI算法具有很高的诊断准确性,保健提供者往往仍然依赖其经验,有时甚至直觉地作出最后决定。有时,提供者毫无疑问地依赖AI模型的产出,这导致对过度依赖技术的关切。这项研究的目的是了解在为提出的临床案例确定差别诊断时,依赖AI动力的药店发放者是如何使用AI动力技术的。我们探讨了药物发放者如何对始终正确的技术作出反应,以衡量他们是否在没有自己任何批判性思考的情况下开始依赖这种技术。我们发现,即使在AI没有解释其决定的情况下,药物发放者也依赖AI25%的时间所作的决定。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员