We establish the fundamental limits of lossless analog compression by considering the recovery of arbitrary m-dimensional real random vectors x from the noiseless linear measurements y=Ax with n x m measurement matrix A. Our theory is inspired by the groundbreaking work of Wu and Verdu (2010) on almost lossless analog compression, but applies to the nonasymptotic, i.e., fixed-m case, and considers zero error probability. Specifically, our achievability result states that, for almost all A, the random vector x can be recovered with zero error probability provided that n > K(x), where K(x) is given by the infimum of the lower modified Minkowski dimension over all support sets U of x. We then particularize this achievability result to the class of s-rectifiable random vectors as introduced in Koliander et al. (2016); these are random vectors of absolutely continuous distribution -- with respect to the s-dimensional Hausdorff measure -- supported on countable unions of s-dimensional differentiable submanifolds of the m-dimensional real coordinate space. Countable unions of differentiable submanifolds include essentially all signal models used in the compressed sensing literature. Specifically, we prove that, for almost all A, s-rectifiable random vectors x can be recovered with zero error probability from n>s linear measurements. This threshold is, however, found not to be tight as exemplified by the construction of an s-rectifiable random vector that can be recovered with zero error probability from n<s linear measurements. This leads us to the introduction of the new class of s-analytic random vectors, which admit a strong converse in the sense of n greater than or equal to s being necessary for recovery with probability of error smaller than one. The central conceptual tools in the development of our theory are geometric measure theory and the theory of real analytic functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月9日
Arxiv
0+阅读 · 11月8日
Arxiv
0+阅读 · 11月7日
Arxiv
0+阅读 · 11月7日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 11月9日
Arxiv
0+阅读 · 11月8日
Arxiv
0+阅读 · 11月7日
Arxiv
0+阅读 · 11月7日
Arxiv
31+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
24+阅读 · 2018年10月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员