We present GenEx, a generative model to explain search results to users beyond just showing matches between query and document words. Adding GenEx explanations to search results greatly impacts user satisfaction and search performance. Search engines mostly provide document titles, URLs, and snippets for each result. Existing model-agnostic explanation methods similarly focus on word matching or content-based features. However, a recent user study shows that word matching features are quite obvious to users and thus of slight value. GenEx explains a search result by providing a terse description for the query aspect covered by that result. We cast the task as a sequence transduction problem and propose a novel model based on the Transformer architecture. To represent documents with respect to the given queries and yet not generate the queries themselves as explanations, two query-attention layers and masked-query decoding are added to the Transformer architecture. The model is trained without using any human-generated explanations. Training data are instead automatically constructed to ensure a tolerable noise level and a generalizable learned model. Experimental evaluation shows that our explanation models significantly outperform the baseline models. Evaluation through user studies also demonstrates that our explanation model generates short yet useful explanations.
翻译:我们提出GenEx, 这是一种向用户解释搜索结果的基因模型, 不仅显示查询和文件单词之间的匹配。 添加 GenEx 解释以查找结果会极大地影响用户的满意度和搜索性能。 搜索引擎主要提供文件标题、 URL 和每个结果的片段。 现有的模型不可知性解释方法同样侧重于字匹配或基于内容的特征。 然而, 最近的一项用户研究表明, 单词匹配功能对于用户来说相当明显, 因而价值微小。 GenEx 解释搜索结果, 为该结果所包含的查询方面提供一个梯形描述 。 我们将此任务描绘成一个序列转换问题, 并提议一个基于变换结构的新模型。 要代表与特定查询有关的文件, 而不是以解释本身生成查询文件, 在变换结构中添加了两个查询感知层和掩码解码。 模型的培训没有使用任何人为的解释。 相反, 培训数据是自动构建的, 以确保一个可容忍的噪音水平和可普遍适用的模型。 实验性评估显示, 我们的解释模型大大超过基线模型。 通过用户的研究还表明我们的解释模型产生了有用的解释。