We have noticed that Marek et al. (2021) try to re-implement our paper Zheng et al. (2020a) in their work "OodGAN: Generative Adversarial Network for Out-of-Domain Data Generation". Our paper proposes a model to generate pseudo OOD samples that are akin to IN-Domain (IND) input utterances. These pseudo OOD samples can be used to improve the OOD detection performance by optimizing an entropy regularization term when building the IND classifier. Marek et al. (2021) report a large gap between their re-implemented results and ours on the CLINC150 dataset (Larson et al., 2019). This paper discusses some key observations that may have led to such a large gap. Most of these observations originate from our experiments because Marek et al. (2021) have not released their codes1. One of the most important observations is that stronger IND classifiers usually exhibit a more robust ability to detect OOD samples. We hope these observations help other researchers, including Marek et al. (2021), to develop better OOD detectors in their applications.
翻译:我们注意到,Marek等人(2021年)试图在他们的工作“OodGAN:外出数据生成的基因反versarial网络”中重新落实我们的论文Zheng等人(2020年a),我们的文件提出了一个模型,以产生类似于IN-Domain(IND)输入的伪OOD样本。这些伪OOOD样本可以用来改进OOD检测性能,方法是在建立IND分类员Marek等人(2021年)时优化对OOD检测性能的术语(2021年),报告在CLINC150数据集(Larson等人(2019年))的重新实施结果和我们的数据之间存在巨大差距。本文讨论了可能导致如此巨大差距的一些关键观察结果。这些观察大多源于我们的实验,因为Marek等人(2021年)没有发布编码。其中一项最重要的观察是,更强大的IND分类员通常表现出更强的检测OOD样品的能力。我们希望这些观察有助于包括Marek等人(2021年)在内的其他研究人员在其应用中开发更好的OD探测器。