Mixed initiative in open-domain dialogue requires a system to pro-actively introduce new topics. The one-turn topic transition task explores how a system connects two topics in a cooperative and coherent manner. The goal of the task is to generate a "bridging" utterance connecting the new topic to the topic of the previous conversation turn. We are especially interested in commonsense explanations of how a new topic relates to what has been mentioned before. We first collect a new dataset of human one-turn topic transitions, which we call OTTers. We then explore different strategies used by humans when asked to complete such a task, and notice that the use of a bridging utterance to connect the two topics is the approach used the most. We finally show how existing state-of-the-art text generation models can be adapted to this task and examine the performance of these baselines on different splits of the OTTers data.
翻译:开放域对话中的混合倡议要求有一个系统来主动引入新专题。 单向主题过渡任务探索一个系统如何以合作和一致的方式连接两个专题。 任务的目标是产生“ 加速” 的语句, 将新专题与上一个对话回合的主题联系起来。 我们特别感兴趣的是, 共同思考地解释一个新专题与之前提到的内容之间的关系。 我们首先收集人类单向主题过渡的新数据集, 我们称之为 OTTers 。 然后我们探索人类在被要求完成这一任务时使用的不同战略, 并注意使用连接这两个专题的连接语句是最常用的方法。 我们最后展示了如何调整现有最先进的文本生成模型, 以适应此任务, 并检查这些关于 OTTers 数据不同分割的基线的性能 。