Keeping the dialogue state in dialogue systems is a notoriously difficult task. We introduce an ontology-based dialogue manage(OntoDM), a dialogue manager that keeps the state of the conversation, provides a basis for anaphora resolution and drives the conversation via domain ontologies. The banking and finance area promises great potential for disambiguating the context via a rich set of products and specificity of proper nouns, named entities and verbs. We used ontologies both as a knowledge base and a basis for the dialogue manager; the knowledge base component and dialogue manager components coalesce in a sense. Domain knowledge is used to track Entities of Interest, i.e. nodes (classes) of the ontology which happen to be products and services. In this way we also introduced conversation memory and attention in a sense. We finely blended linguistic methods, domain-driven keyword ranking and domain ontologies to create ways of domain-driven conversation. Proposed framework is used in our in-house German language banking and finance chatbots. General challenges of German language processing and finance-banking domain chatbot language models and lexicons are also introduced. This work is still in progress, hence no success metrics have been introduced yet.
翻译:在对话系统中保持对话状态是一项臭名昭著的艰巨任务。 我们引入了基于本体的对话管理(OntoDM),这是保持对话状态的对话管理者,为反光解析提供了基础,并通过域内内内肿瘤驱动了对话。银行和金融领域有可能通过一系列丰富的产品和适当名词、名称实体和动词的特殊性来模糊背景。我们把本体用作知识库和对话管理者的基础;知识库组成部分和对话管理器组成了某种意义上的联结。 域内知识用于跟踪利益实体,即碰巧是产品和服务的本体的节点(类),以此方式,我们还引入了某种意义上的对话记忆和关注。我们精细地混合了语言方法、域驱动关键词排序和域内隐,以创造域内驱动的对话方式。我们内部的德文银行和金融聊天室使用了拟议框架。 德国文处理和金融银行业的一般挑战仍然是在域内域内聊天模式和数据库中引入的成功。