The paradigm of variational quantum classifiers (VQCs) encodes \textit{classical information} as quantum states, followed by quantum processing and then measurements to generate classical predictions. VQCs are promising candidates for efficient utilization of a near-term quantum device: classifiers involving $M$-dimensional datasets can be implemented with only $\lceil \log_2 M \rceil$ qubits by using an amplitude encoding. A general framework for designing and training VQCs, however, has not been proposed, and a fundamental understanding of its power and analytical relationships with classical classifiers are not well understood. An encouraging specific embodiment of VQCs, quantum circuit learning (QCL), utilizes an ansatz: it expresses the quantum evolution operator as a circuit with a predetermined topology and parametrized gates; training involves learning the gate parameters through optimization. In this letter, we first address the open questions about VQCs and then show that they, including QCL, fit inside the well-known kernel method. Based on such correspondence, we devise a design framework of efficient ansatz-independent VQCs, which we call the unitary kernel method (UKM): it directly optimizes the unitary evolution operator in a VQC. Thus, we show that the performance of QCL is bounded from above by the UKM. Next, we propose a variational circuit realization (VCR) for designing efficient quantum circuits for a given unitary operator. By combining the UKM with the VCR, we establish an efficient framework for constructing high-performing circuits. We finally benchmark the relatively superior performance of the UKM and the VCR via extensive numerical simulations on multiple datasets.
翻译:变量量子分类(VQCs)的范例(VQCs) 将 vQCs 编码为量子状态,随后是量子处理,然后是用于生成古典预测的测量数据。 VQCs 是一个很有希望的候选人,可以有效利用近期量子装置: 涉及$M$的量子分类(VQCs) : 它表示量子进化操作器是一个具有预设表层和分光化门的电路; 培训涉及通过优化来学习门参数。 但是,我们没有提出用于设计和培训VQCs的总框架,也没有很好地理解它与古典分类师的能量和分析关系。 一个鼓励性能和分析器的具体化VQCs, 量子电路学习(QCL) 使用一个鼓励性能精良性化的UKICs, 我们用一个高效性能的UCRIFCs 运行器, 我们用一个高性能的UCRIFCs, 我们用一个高性能的量框架,我们用UCRIFCs, 我们用一个高的UCRIFCRIFCs, 我们用一个高的SDFILFS, 我们用一个高性化的SLFILFDFLFL 格式构建一个高的性能框架, 我们用一个直向性能标准, 我们用一个高的SLUCs。