Elementary cellular automata (ECA) present iconic examples of complex systems. Though described only by one-dimensional strings of binary cells evolving according to nearest-neighbour update rules, certain ECA rules manifest complex dynamics capable of universal computation. Yet, the classification of precisely which rules exhibit complex behaviour remains a significant challenge. Here we approach this question using tools from quantum stochastic modelling, where quantum statistical memory -- the memory required to model a stochastic process using a class of quantum machines -- can be used to quantify the structure of a stochastic process. By viewing ECA rules as transformations of stochastic patterns, we ask: Does an ECA generate structure as quantified by the quantum statistical memory, and if so, how quickly? We illustrate how the growth of this measure over time correctly distinguishes simple ECA from complex counterparts. Moreover, it provides a more refined means for quantitatively identifying complex ECAs -- providing a spectrum on which we can rank the complexity of ECA by the rate in which they generate structure.
翻译:初级细胞自动成像器(ECA) 展示了复杂系统的标志性实例。 虽然只有一维的二元细胞链条根据近邻更新规则而演变,但某些ECA规则却反映了能够普遍计算的各种复杂动态。然而,对哪些规则的精确分类显示复杂的行为仍是一个重大挑战。在这里,我们使用量子随机模型工具来处理这个问题,量子统计记忆 -- -- 使用量子机器类来模拟随机过程所需的记忆 -- -- 可以用来量化随机过程的结构。通过将ECA规则视为随机模式的转换,我们问:ECA规则是否产生以量子统计记忆量化的结构,如果是的话,这种结构是如何快速的?我们说明这种测量在时间上的增长如何正确地区分简单的ECA和复杂的对应方。此外,它提供了更精确的方法来量化地识别复杂的ECA -- -- 提供了一种频谱,我们可以用它们生成的结构速度来排列ECA的复杂程度。