We consider channel simulation protocols between two communicating parties, Alice and Bob. First, Alice receives a target distribution $Q$, unknown to Bob. Then, she employs a shared coding distribution $P$ to send the minimum amount of information to Bob so that he can simulate a single sample $X \sim Q$. For discrete distributions, Harsha et al. (2009) developed a well-known channel simulation protocol -- greedy rejection sampling (GRS) -- with a bound of ${D_{KL}[Q \,\Vert\, P] + 2\ln(D_{KL}[Q \,\Vert\, P] + 1) + \mathcal{O}(1)}$ on the expected codelength of the protocol. In this paper, we extend the definition of GRS to general probability spaces and allow it to adapt its proposal distribution after each step. We call this new procedure Adaptive GRS (AGRS) and prove its correctness. Furthermore, we prove the surprising result that the expected runtime of GRS is exactly $\exp(D_\infty[Q \,\Vert\, P])$, where $D_\infty[Q \,\Vert\, P]$ denotes the R\'enyi $\infty$-divergence. We then apply AGRS to Gaussian channel simulation problems. We show that the expected runtime of GRS is infinite when averaged over target distributions and propose a solution that trades off a slight increase in the coding cost for a finite runtime. Finally, we describe a specific instance of AGRS for 1D Gaussian channels inspired by hybrid coding. We conjecture and demonstrate empirically that the runtime of AGRS is $\mathcal{O}(D_{KL}[Q \,\Vert\, P])$ in this case.
翻译:我们考虑两个交流方之间的信道仿真协议,即 Alice 和 Bob。首先,Alice 收到一个目标分布 $Q$,Bob 不知道这个分布。然后,她采用一个共享编码分布 $P$,将最小数量的信息发送给 Bob,以便他能够模拟一个样本 $X \sim Q$。对于离散分布,Harsha 等人(2009)开发了一种著名的信道仿真协议——贪心拒绝采样(GRS),其在协议的期望码长度方面具有 ${D_{KL}[Q \,\Vert\, P] + 2\ln(D_{KL}[Q \,\Vert\, P] + 1) + \mathcal{O}(1)}$ 的上界。在本文中,我们将 GRS 的定义扩展到一般的概率空间,并允许它在每一步后自适应地改变提议分布。我们称这个新过程为自适应 GRS(AGRS),并证明它的正确性。此外,我们证明了 GRS 的期望运行时间恰好为 $\exp(D_\infty[Q \,\Vert\, P])$,其中 $D_\infty[Q \,\Vert\, P]$ 表示 R\'enyi $\infty$-散度。然后,我们将 AGRS 应用于高斯信道仿真问题。我们证明了当目标分布的平均值计算时,GRS 的期望运行时间是无穷的,并提出了一种解决方案,即在略微增加编码成本的情况下换取有限的运行时间。最后,我们描述一个针对 1D 高斯信道的特定 AGRS,灵感来自混合编码。我们猜想并在经验上证明了,在这种情况下,AGRS 的运行时间是 $\mathcal{O}(D_{KL}[Q \,\Vert\, P])$。