Comparisons of treatments or exposures are of central interest in epidemiology, but direct comparisons are not always possible due to practical or ethical reasons. Here, we detail a fusion approach to compare treatments across studies. The motivating example entails comparing the risk of the composite outcome of death, AIDS, or greater than a 50% CD4 cell count decline in people with HIV when assigned triple versus mono antiretroviral therapy, using data from the AIDS Clinical Trial Group (ACTG) 175 (mono versus dual therapy) and ACTG 320 (dual versus triple therapy). We review a set of identification assumptions and estimate the risk difference using an inverse probability weighting estimator that leverages the shared trial arms (dual therapy). A fusion diagnostic based on comparing the shared arms is proposed that may indicate violation of the identification assumptions. Application of the data fusion estimator and diagnostic to the ACTG trials indicates triple therapy results in a reduction in risk compared to monotherapy in individuals with baseline CD4 counts between 50 and 300 cells/mm$^3$. Bridged treatment comparisons address questions that none of the constituent data sources could address alone, but valid fusion-based inference requires careful consideration.
翻译:对治疗或接触的比较是流行病学的中心利益,但由于实际或伦理原因,直接比较并非总有可能实现。在这里,我们详细介绍了一种混合法,以比较各种研究的治疗。激励性实例涉及比较在分配三重治疗和单一抗逆转录病毒疗法时艾滋病毒感染者综合结果的风险,即三重治疗、艾滋病或超过50%的CD4细胞计数下降50%,使用艾滋病临床试验组175(对双重治疗)和ACTG320(双重对三重治疗)的数据。我们审查一套识别假设并估计风险差异,使用一个反概率加权估计器,利用共同试用武器(双向疗法)进行计算。根据对共用武器进行比较而提出的聚合诊断分析可能表明违反鉴定假设。数据集测值和诊断对ACTG试验的应用表明,与基线CD4计50至300个细胞/毫米3美元的个人的单一治疗相比,三重治疗风险降低。我们审查一套识别假设,并估计风险差异。我们利用一个反概率估计器,利用一个反概率估计器来利用共同试验武器(双向疗法)来比较。根据比较,提议,根据对共用共用共用共用武器(双重治疗)提出,但需要仔细推,需要仔细分析,需要仔细考虑。建议,根据对准,根据数据进行数据来源没有单独分析,对准,但需要仔细考虑。