We give an almost-linear time algorithm for the Steiner connectivity augmentation problem: given an undirected graph, find a smallest (or minimum weight) set of edges whose addition makes a given set of terminals $\tau$-connected (for any given $\tau > 0$). The running time of our algorithm is dominated by polylogarithmic calls to any maximum flow subroutine; using the recent almost-linear time maximum flow algorithm (Chen et al., FOCS 2022), we get an almost-linear running time for our algorithm as well. This is tight up to the polylogarithmic factor even for just two terminals. Prior to our work, an almost-linear (in fact, near-linear) running time was known only for the special case of global connectivity augmentation, i.e., when all vertices are terminals (Cen et al., STOC 2022). We also extend our algorithm to the closely related Steiner splitting-off problem, where the edges incident on a vertex have to be {\em split-off} while maintaining the (Steiner) connectivity of a given set of terminals. Prior to our work, a nearly-linear time algorithm was known only for the special case of global connectivity (Cen et al., STOC 2022). The only known generalization beyond global connectivity was to preserve all pairwise connectivities using a much slower algorithm that makes $n$ calls to an all-pairs maximum flow (or Gomory-Hu tree) subroutine (Lau and Yung, SICOMP 2013), as against polylog(n) calls to a (single-pair) maximum flow subroutine in this work.


翻译:我们给施泰纳连通性增强问题提供了几乎线性时间算法:鉴于一个没有方向的图表,我们找到一组最小(或最小重量)的边缘,这些边缘的添加使得一组特定的终端 $\ tau$-连通(对于任何给定的$tau > 0美元)。我们算法的运行时间主要取决于任何最大流流次路径的多线性呼唤;使用最近几乎线性时间最大流算法(Chen等人,FOCS 2022),我们得到一个几乎线性运行的时间,我们的算法也几乎线性运行时间。这甚至接近于两个端点的多线性因素。在我们工作之前,一个几乎线性(事实上,近线性)运行时间只为全球连通性增强的特例,即当所有脊椎都是终点时(Cen等人,STOC 2022)。我们还将我们的Stalogyal 算法只延伸到密切关联的 Steiner-blick-dal-ality问题(Sildality, iver iot river rient river river river river) 不得不一个离离子事件不得不-al-al-al-al-al-revental-rations) 几乎一个小的离不开一个小路流,近C-ral-ral-ral-ral-lent-ral-ral-ral-ral-lent-ral-ral-ral-ral-ral-tal-tal-tal-tal-lation-tal-tal-tal-lick-lick-lick-t-t-t-t-s-s-s-s-s-s-s-s-s-s-s-n-n-n-n-n-s-n-n-n-n-n-s-n-n-n-n-s-s-n-n-n-n-n-s-s-n-n-n-n-n-n-s-s-s-s-s-s-n-s-l-l-l-l-l-l-l-l-l-l-l-l-l-l-

0
下载
关闭预览

相关内容

STOC论文的典型但非排他性的主题包括基础领域,如算法和数据结构、计算复杂性、并行和分布式算法、量子计算、连续和离散优化、计算中的随机性、近似算法、组合数学和算法图论,密码学,计算几何,代数计算,逻辑计算应用,算法编码理论。典型的主题还包括计算和基础方面的领域,如机器学习,经济学,公平性,隐私,网络,数据管理和生物学。STOC鼓励那些拓宽计算理论研究范围,或提出可从理论调查和分析中受益的重要问题的论文。官网链接:http://acm-stoc.org/stoc2019/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月4日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员