This paper explores the importance of text sentiment analysis and classification in the field of natural language processing, and proposes a new approach to sentiment analysis and classification based on the bidirectional gated recurrent units (GRUs) model. The study firstly analyses the word cloud model of the text with six sentiment labels, and then carries out data preprocessing, including the steps of removing special symbols, punctuation marks, numbers, stop words and non-alphabetic parts. Subsequently, the data set is divided into training set and test set, and through model training and testing, it is found that the accuracy of the validation set is increased from 85% to 93% with training, which is an increase of 8%; at the same time, the loss value of the validation set decreases from 0.7 to 0.1 and tends to be stable, and the model is gradually close to the actual value, which can effectively classify the text emotions. The confusion matrix shows that the accuracy of the model on the test set reaches 94.8%, the precision is 95.9%, the recall is 99.1%, and the F1 score is 97.4%, which proves that the model has good generalisation ability and classification effect. Overall, the study demonstrated an effective method for text sentiment analysis and classification with satisfactory results.
翻译:暂无翻译