In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moderate gradient and a small amplitude fine scale with arbitratry gradient, the Smagorinsky model admits stability estimates for perturbations, with exponential growth depending only on the large scale gradient. We then show in the context of stabilized finite element methods that the same result carries over to the approximation and that in this context, for suitably chosen finite element spaces the Smagorinsky model acts as a stabilizer yielding close to optimal error estimates in the $L^2$-norm for smooth flows in the pre-asymptotic high Reynolds number regime.
翻译:在目前的工作中,我们对Smagorinsky模型对相关扰动方程式稳定性的影响展示了一些结果。我们表明,在存在光谱差距的情况下,如果流体可以以中度梯度和小振幅微幅梯度进行大规模分解,那么,Smagorinsky模型承认扰动的稳定性估计值,而扰动的指数增长仅取决于大度梯度。然后,在稳定的有限元素方法中,我们显示,同样的结果会延续到近似,在这种情况下,对于适当选择的有限元素空间,Smagorinsky模型起到稳定器的作用,在Americaticro高Reynolds数制度中,稳定器接近于2美元-诺姆美元的最佳误差估计值。