In this paper, we derive diffusion models for the error evolution for a learning algorithm by a multiscale deep neural network (MscaleDNN) \cite{liu2020multi} in approximating oscillatory functions and solutions of boundary value problem of differential equations. The diffusion models in the spectral domain for the error of the MscaleDNN trained by a gradient descent optimization algorithm are obtained when the learning rate goes to zero and the width of network goes to infinity. The diffusion coefficients of the models possess supports covering wider range of frequency as the number of scales used in MscaleDNN increases, compared to that for a normal fully connected neural network. Numerical results of the diffusion models shows faster error decay of the MscaleDNN over a wide frequency range, thus validating the advantages of using the MscaleDNN in the approximating highly oscillated functions.
翻译:在本文中, 我们为学习算法的错误演化提供扩散模型, 由多尺度深层神经网络 (MsassaleDNN)\ cite{liu2020mult} 生成, 以近似血管功能和差异方程边界值问题的解决方案为对象。 在光谱域中, 由梯度下降优化算法培训的 msassalDNN 错误的传播模型, 当学习率降到零, 网络宽度达到无限时, 获得。 模型的传播系数支持覆盖范围更广的频率范围, 与正常完全连接的神经网络相比, MscalDNNN 使用的比例增加。 扩散模型的数值结果显示, MsassalDNN 在宽频范围内发生更快的错误, 从而验证了在接近高度振动函数中使用 mscaleDNN的优势 。