Communication compression is a crucial technique for modern distributed learning systems to alleviate their communication bottlenecks over slower networks. Despite recent intensive studies of gradient compression for data parallel-style training, compressing the activations for models trained with pipeline parallelism is still an open problem. In this paper, we propose AC-SGD, a novel activation compression algorithm for communication-efficient pipeline parallelism training over slow networks. Different from previous efforts in activation compression, instead of compressing activation values directly, AC-SGD compresses the changes of the activations. This allows us to show, to the best of our knowledge for the first time, that one can still achieve $O(1/\sqrt{T})$ convergence rate for non-convex objectives under activation compression, without making assumptions on gradient unbiasedness that do not hold for deep learning models with non-linear activation functions.We then show that AC-SGD can be optimized and implemented efficiently, without additional end-to-end runtime overhead.We evaluated AC-SGD to fine-tune language models with up to 1.5 billion parameters, compressing activations to 2-4 bits.AC-SGD provides up to 4.3X end-to-end speed-up in slower networks, without sacrificing model quality. Moreover, we also show that AC-SGD can be combined with state-of-the-art gradient compression algorithms to enable "end-to-end communication compression: All communications between machines, including model gradients, forward activations, and backward gradients are compressed into lower precision.This provides up to 4.9X end-to-end speed-up, without sacrificing model quality.


翻译:通信压缩是现代分布式学习系统的关键技术,以缓解在较慢的网络中传播的通信瓶颈。 尽管最近对数据平行式培训的梯度压缩进行了密集研究,但压缩受管道平行论训练的模型的启动仍然是一个尚未解决的问题。 在本文中,我们提出AC-SGD,这是用于通信高效管道平行化培训的新型激活压缩压缩算法,与以前在激活压缩而不是直接压缩激活值的努力不同,AC-SGD压缩了激活值的变化。这使我们能够根据我们的知识,首次显示对数据平行式培训的梯度压缩进行梯度压缩的密集研究,压缩受管道平行平行平行论训练的模型的启动速度仍然是美元($(1/sqrt{T}),而对于在激活过程中经过编织的非金字节线平行论目标的模型的启动率($$ $( 1/\ sqrality-rality-rality-rality-ral-lation-ral-ral-ral-ral-ral-ral-ral-ral-lation-ral-lation-ral-lation-lation-lation-lation-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) 提供这一模型的升级和不向前向前向前端端端端端的升级速度, 和前向前向前向后显示的升级和后向前向后向后向前向后向后向后推进速度展示的升级速度,向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后展示,向后向后推进速度展示,向后向后向后向后向后展示,提供,再展示,提供后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向后向</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
19+阅读 · 2020年7月13日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员