Sensor technologies are becoming increasingly prevalent in the biomedical field, with applications ranging from telemonitoring of people at risk, to using sensor derived information as objective endpoints in clinical trials. To fully utilize sensor information, signals from distinct sensors often have to be temporally aligned. However, due to imperfect oscillators and significant noise, commonly encountered with biomedical signals, temporal alignment of raw signals is an all but trivial problem, with, to-date, no generally applicable solution. In this work, we present Deep Canonical Correlation Alignment (DCCA), a novel, generally applicable solution for the temporal alignment of raw (biomedical) sensor signals. DCCA allows practitioners to directly align raw signals, from distinct sensors, without requiring deep domain knowledge. On a selection of artificial and real datasets, we demonstrate the performance and utility of DCCA under a variety of conditions. We compare the DCCA algorithm to other warping based methods, DCCA outperforms dynamic time warping and cross correlation based methods by an order of magnitude in terms of alignment error. DCCA performs especially well on almost periodic biomedical signals such as heart-beats and breathing patterns. In comparison to existing approaches, that are not tailored towards raw sensor data, DCCA is not only fast enough to work on signals with billions of data points but also provides automatic filtering and transformation functionalities, allowing it to deal with very noisy and even morphologically distinct signals.


翻译:在生物医学领域,感官技术日益普遍,其应用范围从远程监测高危人群到将感官衍生信息用作临床试验的客观终点等各种应用领域。为了充分利用感官信息,不同传感器的信号往往必须在时间上保持一致。然而,由于不完善的振荡器和生物医学信号通常遇到的重大噪音,原始信号的暂时匹配是一个非常小的问题,而迄今为止没有普遍适用的解决办法。在这项工作中,我们提出了深卡诺联系(DCCA)的新颖和普遍适用的解决方案,即原材料(生物医学)传感器信号的时间对齐。DCCA允许从不同传感器直接对准原始信号,而不需要深域知识。关于人工和真实数据集的选择,我们展示了DCCA在各种条件下的性能和实用性。我们将DCCA的算法与其他基于战争的方法相比较,DCCA的动态时间调和交叉关联方法在调和误差方面顺序上是分级的。 DCCA尤其对几乎定期的生物医学信号,例如心脏震荡和呼吸的信号,不要求有深度知识。在选择人造域图上,我们只能将DCCA的先变型和先变型数据与先变型数据进行比较。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Acceleration based PSO for Multi-UAV Source-Seeking
Arxiv
0+阅读 · 2021年9月23日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员