We adapt previous research on category theory and topological unsupervised learning to develop a functorial perspective on manifold learning. We first characterize manifold learning algorithms as functors that map pseudometric spaces to optimization objectives and factor through hierachical clustering functors. We then use this characterization to prove refinement bounds on manifold learning loss functions and construct a hierarchy of manifold learning algorithms based on their invariants. We express several popular manifold learning algorithms as functors at different levels of this hierarchy, including Metric Multidimensional Scaling, IsoMap, and UMAP. Next, we use interleaving distance to study the stability of a broad class of manifold learning algorithms. We present bounds on how closely the embeddings these algorithms produce from noisy data approximate the embeddings they would learn from noiseless data. Finally, we use our framework to derive a set of novel manifold learning algorithms, which we experimentally demonstrate are competitive with the state of the art.
翻译:我们调整了先前的分类理论和地形学学学研究,以发展对多重学习的调控视角。 我们首先将多重学习算法定性为将假数空间映射成优化目标和因子的真菌学家, 通过高频群集真菌来优化目标和因素。 然后我们用这种定性来证明多重学习损失功能的精细界限, 并根据其变异性构建一个多元学习算法的等级分级结构。 我们作为这一等级的不同层次的杀菌师, 包括Metric MDolospulation、 IsoMap 和 UMAP, 表示一些流行的多元学习算法。 其次, 我们用中间距离来研究广泛的多种学习算法的稳定性。 我们展示了这些算法的嵌入范围, 这些算法是如何从杂乱的数据中产生接近他们从无噪音数据中学习的。 最后, 我们用我们的框架来产生一套新颖的多元学习算法, 我们实验显示这些算法与艺术状态具有竞争力 。