We propose a method to incrementally learn an embedding space over the domain of network architectures, to enable the careful selection of architectures for evaluation during compressed architecture search. Given a teacher network, we search for a compressed network architecture by using Bayesian Optimization (BO) with a kernel function defined over our proposed embedding space to select architectures for evaluation. We demonstrate that our search algorithm can significantly outperform various baseline methods, such as random search and reinforcement learning (Ashok et al., 2018). The compressed architectures found by our method are also better than the state-of-the-art manually-designed compact architecture ShuffleNet (Zhang et al., 2018). We also demonstrate that the learned embedding space can be transferred to new settings for architecture search, such as a larger teacher network or a teacher network in a different architecture family, without any training. Code is publicly available here: https://github.com/Friedrich1006/ESNAC .
翻译:我们提出在网络架构领域逐步学习嵌入空间的方法,以便能够在压缩架构搜索过程中仔细选择用于评估的架构。 在教师网络中,我们通过使用Bayesian Optimination(BO)寻找压缩的网络架构,其内核功能由我们提议的嵌入空间来定义,以选择用于评估的架构。我们证明我们的搜索算法可以大大超过各种基线方法,如随机搜索和强化学习(Ashok等人,2018年)。我们的方法发现的压缩架构也比最先进的手工设计的压缩架构ShuffleNet(Zhang等人,2018年)。我们还表明,学习的嵌入空间可以转移到新的建筑搜索环境,如更大的教师网络或不同架构大家庭的教师网络,无需任何培训。 代码可以公开查阅:https://github.com/Friedririch1006/ESNAC。