The research fields of parametric face models and 3D face reconstruction have been extensively studied. However, a critical question remains unanswered: how to tailor the face model for specific reconstruction settings. We argue that reconstruction with multi-view uncalibrated images demands a new model with stronger capacity. Our study shifts attention from data-dependent 3D Morphable Models (3DMM) to an understudied human-designed skinning model. We propose Adaptive Skinning Model (ASM), which redefines the skinning model with more compact and fully tunable parameters. With extensive experiments, we demonstrate that ASM achieves significantly improved capacity than 3DMM, with the additional advantage of model size and easy implementation for new topology. We achieve state-of-the-art performance with ASM for multi-view reconstruction on the Florence MICC Coop benchmark. Our quantitative analysis demonstrates the importance of a high-capacity model for fully exploiting abundant information from multi-view input in reconstruction. Furthermore, our model with physical-semantic parameters can be directly utilized for real-world applications, such as in-game avatar creation. As a result, our work opens up new research directions for the parametric face models and facilitates future research on multi-view reconstruction.
翻译:多参数面部模型和三维面部重建的研究领域已经受到了广泛的关注。然而,一个关键性的问题仍未得到回答:如何针对特定重建场景定制面部模型。我们认为,使用多视角非标定图像进行重建需要一种更强的模型的能力。我们的研究将注意力从数据依赖的三维可塑模型转移到了未经研究的人工设计的皮肤模型。我们提出了自适应皮肤模型(ASM),通过更紧凑和完全可调的参数重新定义了皮肤模型。通过广泛的实验,我们证明ASM相比3DMM实现了显著提高的能力,同时具有模型大小和易拓扑实现的额外优势。我们在Florence MICC Coop基准测试中通过ASM实现了多视角重建的最新性能。我们的定量分析表明,高容量模型对于完全利用多视角输入中的丰富信息的重建至关重要。此外,我们的具有物理-语义参数的模型可以直接应用于现实世界的应用,如游戏角色创建。因此,我们的工作为参数化面部模型开辟了新的研究方向,促进了多视角重建的未来研究。