In this paper, we employ the thoughts and methodologies of Shannon's information theory to solve the problem of the optimal radar parameter estimation. Based on a general radar system model, the \textit{a posteriori} probability density function of targets' parameters is derived. Range information (RI) and entropy error (EE) are defined to evaluate the performance. It is proved that acquiring 1 bit of the range information is equivalent to reducing estimation deviation by half. The closed-form approximation for the EE is deduced in all signal-to-noise ratio (SNR) regions, which demonstrates that the EE degenerates to the mean square error (MSE) when the SNR is tending to infinity. Parameter estimation theorem is then proved, which claims that the theoretical RI is achievable. The converse claims that there exists no unbiased estimator whose empirical RI is larger than the theoretical RI. Simulation result demonstrates that the theoretical EE is tighter than the commonly used Cram\'er-Rao bound and the ZivZakai bound.
翻译:在本文中,我们使用香农信息理论的思想和方法来解决最佳雷达参数估计问题。 基于一般雷达系统模型, 得出目标参数的概率密度函数。 测距信息( RI) 和 entropy 错误( EE) 定义来评估性能。 事实证明, 获取 1 位范围信息等于将估计偏差减半。 在所有信号对噪音比( SNR) 区域中, 都推断出 EE 的闭式近似, 这表明 EE 退化为平均平方差( MSE ), 当 SNR 趋向于无限时 。 参数估计矩数随后得到证明, 声称理论RI 是可实现的。 反论称, 不存在公正的估计符, 其经验性RI 大于理论RI 。 模拟结果显示, 理论 EE 比通常使用的 Cram\' er- Rao 约束和 ZivZakai 约束的理论更紧。