We establish sufficient conditions for the quick relaxation to kinetic equilibrium in the classic Vicsek-Cucker-Smale model of bird flocking. The convergence time is polynomial in the number of birds as long as the number of flocks remains bounded. This new result relies on two key ingredients: exploiting the convex geometry of embedded averaging systems; and deriving new bounds on the s-energy of disconnected agreement systems. We also apply our techniques to bound the relaxation time of certain pattern-formation robotic systems investigated by Sugihara and Suzuki.
翻译:在典型的Vicsek-Cucker-Smal 鸟群捕鸟模式中,我们为快速放松运动平衡创造了充分的条件。只要鸟群数量仍然被捆绑,这种融合时间就是鸟类数量多寡的时间。这一新的结果依赖于两个关键因素:利用嵌入平均系统的锥形几何学;对断开的协议系统产生新的能量界限。我们还运用我们的技术来约束由杉原和铃木调查的某些模式化机器人系统的放松时间。