Financial portfolio management is one of the most applicable problems in reinforcement learning (RL) owing to its sequential decision-making nature. Existing RL-based approaches, while inspiring, often lack scalability, reusability, or profundity of intake information to accommodate the ever-changing capital markets. In this paper, we propose MSPM, a modularized and scalable, multi-agent RL-based system for financial portfolio management. MSPM involves two asynchronously updated units: an Evolving Agent Module (EAM) and Strategic Agent Module (SAM). A self-sustained EAM produces signal-comprised information for a specific asset using heterogeneous data inputs, and each EAM employs its reusability to have connections to multiple SAMs. An SAM is responsible for asset reallocation in a portfolio using profound information from the connected EAMs. With the elaborate architecture and the multi-step condensation of volatile market information, MSPM aims to provide a customizable, stable, and dedicated solution to portfolio management, unlike existing approaches. We also tackle the data-shortage issue of newly-listed stocks by transfer learning, and validate the indispensability of EAM with four different portfolios. Experiments on 8-year U.S. stock market data prove the effectiveness of MSPM in profit accumulation, by its outperformance over existing benchmarks.


翻译:现有基于RL的方法,虽然激励(往往缺乏可缩放性、可再使用性或接收信息的先进性,以适应不断变化的资本市场),但每个EAM采用其可重复性,以便与多个SAM连接起来。在本文件中,我们提议采用MSPM(一个模块化和可缩放的多试剂RL系统),用于金融组合管理。MSPM涉及两个同步更新的单位:一个动态代理模块(EAM)和战略代理模块(SAM)。一个自我维持的EAM(EAM)利用各种数据投入为特定资产提供信号兼容的信息,而每个EAM(EAM)则利用其可重复性与多个SAM连接起来。一个SAM(一个SAM)负责在组合中进行资产再分配,使用来自链接的EAM(EAM)的深刻信息。随着市场信息结构的完善和波动信息的多步调,MSP(多步调)旨在为组合管理提供一个可定制、稳定、专门的解决方案。我们与现有方法不同,还处理新上市股票的短期数据转换问题,通过转移、测试和验证现有IMS(ERM)资产积累基准。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年8月11日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员