We present a framework that unifies directed buy-at-bulk network design and directed spanner problems, namely, \emph{buy-at-bulk spanners}. The goal is to find a minimum-cost routing solution for network design problems that capture economies at scale, while satisfying demands and distance constraints for terminal pairs. A more restricted version of this problem was shown to be $O(2^{{\log^{1-\ep} n}})$-hard to approximate, where $n$ is the number of vertices, under a standard complexity assumption, due to Elkin and Peleg (Theory of Computing Systems, 2007). To the best of our knowledge, our results are the first sublinear factor approximation algorithms for directed buy-at-bulk spanners. Furthermore, these results hold even when we allow the edge lengths to be \emph{negative}, unlike the previous literature for spanners. Our approximation ratios match the state-of-the-art ratios in special cases, namely, buy-at-bulk network design by Antonakopoulos (WAOA, 2010) and weighted spanners by Grigorescu, Kumar, and Lin (APPROX 2023). Our results are based on new approximation algorithms for the following two problems that are of independent interest: \emph{minimum-density distance-constrained junction trees} and \emph{resource-constrained shortest path with negative consumption}.
翻译:暂无翻译