This work deals with optimal control problems as a strategy to drive bifurcating solution of nonlinear parametrized partial differential equations towards a desired branch. Indeed, for these governing equations, multiple solution configurations can arise from the same parametric instance. We thus aim at describing how optimal control allows to change the solution profile and the stability of state solution branches. First of all, a general framework for nonlinear optimal control problem is presented in order to reconstruct each branch of optimal solutions, discussing in detail the stability properties of the obtained controlled solutions. Then, we apply the proposed framework to several optimal control problems governed by bifurcating Navier-Stokes equations in a sudden-expansion channel, describing the qualitative and quantitative effect of the control over a pitchfork bifurcation, and commenting in detail the stability eigenvalue analysis of the controlled state. Finally, we propose reduced order modeling as a tool to efficiently and reliably solve parametric stability analysis of such optimal control systems, which can be challenging to perform with standard discretization techniques such as Finite Element Method.
翻译:这项工作涉及最佳控制问题,作为将非线性对称部分差异方程式的双向解决方案推向理想分支的战略。事实上,对于这些调节方程式,同一参数实例可以产生多种解决方案配置。因此,我们的目的是说明最佳控制如何允许改变解决方案配置和国家解决方案分支的稳定。首先,提出了非线性最佳控制问题总框架,以重建最佳解决方案的每一分支,详细讨论所获得控制方程式的稳定性。然后,我们将拟议框架应用于由突如其来的扩展通道中双向导航-斯托克斯方程式管理的若干最佳控制问题,说明对投管两端的两面形组合控制在质量和数量上的效果,并详细评论受控状态的稳定值分析。最后,我们提议减少定序模式,作为高效可靠地解决对此类最佳控制系统进行参数稳定性分析的工具,这对于使用标准离析技术(如Finite Element Progyd)来说具有挑战性。