This paper describes a novel framework for a human-machine interface that can be used to control an upper-limb prosthesis. The objective is to estimate the human's motor intent from noisy surface electromyography signals and to execute the motor intent on the prosthesis (i.e., the robot) even in the presence of previously unseen perturbations. The framework includes muscle-tendon models for each degree of freedom, a method for learning the parameter values of models used to estimate the user's motor intent, and a variable impedance controller that uses the stiffness and damping values obtained from the muscle models to adapt the prosthesis' motion trajectory and dynamics. We experimentally evaluate our framework in the context of able-bodied humans using a simulated version of the human-machine interface to perform reaching tasks that primarily actuate one degree of freedom in the wrist, and consider external perturbations in the form of a uniform force field that pushes the wrist away from the target. We demonstrate that our framework provides the desired adaptive performance, and substantially improves performance in comparison with a data-driven baseline.
翻译:本文描述一个可用于控制顶部表面假肢的人体机器界面的新框架。 目的是根据噪音表面电感学信号估计人体发动机的动机,甚至在出现先前不为人知的扰动时也执行假肢(即机器人)的发动机意图。 框架包括每个自由度的肌肉- 泰登模型,一种用来学习用于估计用户运动意图的模型的参数值的方法,以及一种可变阻力控制器,该控制器使用从肌肉模型获得的僵硬性和阻力值来调整假肢运动轨迹和动态。 我们实验性地评估了人体机能健全的框架,利用模拟的人体界面来完成主要在手腕上发挥某种程度自由作用的任务,并用将手腕推离目标的统一力场的形式考虑外部扰动。 我们证明,我们的框架提供了所需的适应性能和障碍控制器,并大大改进了与数据驱动基线相比较的性能。