Text lines are important parts of handwritten document images and easier to analyze by further applications. Despite recent progress in text line detection, text line extraction from a handwritten document remains an unsolved task. This paper proposes to use a fully convolutional network for text line detection and energy minimization for text line extraction. Detected text lines are represented by blob lines that strike through the text lines. These blob lines assist an energy function for text line extraction. The detection stage can locate arbitrarily oriented text lines. Furthermore, the extraction stage is capable of finding out the pixels of text lines with various heights and interline proximity independent of their orientations. Besides, it can finely split the touching and overlapping text lines without an orientation assumption. We evaluate the proposed method on VML-AHTE, VML-MOC, and Diva-HisDB datasets. The VML-AHTE dataset contains overlapping, touching and close text lines with rich diacritics. The VML-MOC dataset is very challenging by its multiply oriented and skewed text lines. The Diva-HisDB dataset exhibits distinct text line heights and touching text lines. The results demonstrate the effectiveness of the method despite various types of challenges, yet using the same parameters in all the experiments.
翻译:文本线是手写文档图像的重要部分,并且更容易通过进一步的应用进行分析。尽管最近在文本线探测方面取得了进展,但从手写文档中提取文本线仍然是一项尚未解决的任务。本文件提议使用一个完全进化的网络,用于文本线探测和将能量最小化,以便提取文本线。检测的文本线由通过文本线打击的布洛布线代表。这些布洛布线有助于文本线提取的能量功能。检测阶段可以任意定位方向的文本线。此外,提取阶段能够找到文本线的像素,该等线具有不同的高度和跨线接近方向。此外,它还可以在不设方向假设的情况下,将触摸和重叠的文本线条进行细微分割。我们评估了VML-AHTE、VML-MOC和Diva-HisDB的拟议方法。 VML-AHTE数据集包含丰富的对文本线的重叠、触摸和近线。VML-MOC数据集因其多重方向和斜体文本线条而非常具有挑战性。DViva-HDD数据库数据集的数据系展示了不同的文本参数,尽管有不同的高度和程度。