Ensemble methods combine the predictions of multiple models to improve performance, but they require significantly higher computation costs at inference time. To avoid these costs, multiple neural networks can be combined into one by averaging their weights (model soups). However, this usually performs significantly worse than ensembling. Weight averaging is only beneficial when weights are similar enough (in weight or feature space) to average well but different enough to benefit from combining them. Based on this idea, we propose PopulAtion Parameter Averaging (PAPA): a method that combines the generality of ensembling with the efficiency of weight averaging. PAPA leverages a population of diverse models (trained on different data orders, augmentations, and regularizations) while occasionally (not too often, not too rarely) replacing the weights of the networks with the population average of the weights. PAPA reduces the performance gap between averaging and ensembling, increasing the average accuracy of a population of models by up to 1.1% on CIFAR-10, 2.4% on CIFAR-100, and 1.9% on ImageNet when compared to training independent (non-averaged) models.


翻译:集成方法将多个模型的预测结果结合起来以提高性能。但是,在推断时,这通常需要更高的计算资源。为了避免这些成本,可以将多个神经网络的权重进行平均以得到一个更加简单的模型。但是,与集成方法相比,这种方法通常的性能更差。权重平均仅有在权重足够相似(在权重或特征空间中)以进行良好平均但足够不同以从中受益时才有益。基于这个思想,我们提出了基于群体参数平均的神经网络融合方法:(PAPA)。PAPA利用多样性模型群体(在不同的数据顺序、扩增方法和正则化方案上进行训练),同时周期性地替换网络权重为平均后的群体平均值。与训练独立的模型相比,PAPA可以将模型群体的平均准确度在CIFAR-10上提高1.1%、在CIFAR-100上提高2.4%、在ImageNet上提高1.9%。

0
下载
关闭预览

相关内容

【ICML2022】Sharp-MAML:锐度感知的模型无关元学习
专知会员服务
17+阅读 · 2022年6月10日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【ICLR2020】五篇Open代码的GNN论文
专知会员服务
48+阅读 · 2019年10月2日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
10+阅读 · 2021年3月30日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员