We study the space of $C^1$ isogeometric spline functions defined on trilinearly parameterized multi-patch volumes. Amongst others, we present a general framework for the design of the $C^1$ isogeometric spline space and of an associated basis, which is based on the two-patch construction [7], and which works uniformly for any possible multi-patch configuration. The presented method is demonstrated in more detail on the basis of a particular subclass of trilinear multi-patch volumes, namely for the class of trilinearly parameterized multi-patch volumes with exactly one inner edge. For this specific subclass of trivariate multi-patch parameterizations, we further numerically compute the dimension of the resulting $C^1$ isogeometric spline space and use the constructed $C^1$ isogeometric basis functions to numerically explore the approximation properties of the $C^1$ spline space by performing $L^2$ approximation.
翻译:我们研究了在三线参数化多批量量中界定的 $C$1美元等离子测量样条功能的空间。 除其他外, 我们提出了一个用于设计 $C$1 等离子测量样条空间的一般框架, 以及一个相关的基础, 以两线构造[ 7]为基础, 对任何可能的多批量配置都统一工作。 所介绍的方法在三线多批量量的某个子类( 即三线参数化多批量, 完全为一个内边缘的等级) 的基础上, 得到了更详细的演示。 对于这三线参数化多批量参数化的子类, 我们进一步从数字上对由此形成的 $C$1 等离子空间的尺寸进行了计算, 并使用所建的 $C$1 等离子计算基功能, 以数字方式探索 $C$1 美元 spline spline 空间的近似值特性, 即使用 $L$2美元近似值。