The most recent multi-source covariate shift algorithm is an efficient hyperparameter optimization algorithm for missing target output. In this paper, we extend this algorithm to the framework of federated learning. For data islands in federated learning and covariate shift adaptation, we propose the federated domain adaptation estimate of the target risk which is asymptotically unbiased with a desirable asymptotic variance property. We construct a weighted model for the target task and propose the federated covariate shift adaptation algorithm which works preferably in our setting. The efficacy of our method is justified both theoretically and empirically.
翻译:最新的多源共变式变换算法是缺失目标输出的有效超参数优化算法。 在本文中, 我们将这一算法扩展至联合学习的框架。 对于联合学习和共变转移适应中的数据岛屿, 我们提议对目标风险进行联合域调整估计, 且该估计在理论上和实验上都是合理的。 我们为目标任务构建了一个加权模型, 并提议了最适合我们设置的组合共变换适应算法。 我们的方法在理论上和实验上都是合理的。</s>